The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr.
نویسندگان
چکیده
A recent investigation found evidence that the transition of Arabidopsis thaliana from ancestral self-incompatibility (SI) to full self-compatibility occurred very recently and suggested that this occurred through a selective fixation of a nonfunctional allele (PsiSCR1) at the SCR gene, which determines pollen specificity in the incompatibility response. The main evidence is the lack of polymorphism at the SCR locus in A. thaliana. However, the nearby SRK gene, which determines stigma specificity in self-incompatible Brassicaceae species, has extremely high sequence diversity, with 3 very divergent SRK haplotypes, 2 of them present in multiple strains. Such high diversity is extremely unusual in this species, and it suggests the possibility that multiple, different SRK haplotypes may have been preserved from A. thaliana's self-incompatible ancestor. To study the evolution of S-haplotypes in the A. thaliana lineage, we searched the 2 most closely related Arabidopsis species Arabidopsis lyrata and Arabidopsis halleri, in which most populations have retained SI, and found SRK sequences corresponding to all 3 A. thaliana haplogroup sequences. Our molecular evolutionary analyses of these 3 S-haplotypes provide an independent estimate of the timing of the breakdown of SI and again exclude an ancient transition to selfing in A. thaliana. Comparing sequences of each of the 3 haplogroups between species, we find that 2 of the 3 SRK sequences (haplogroups A and B) are similar throughout their length, suggesting that little or no recombination with other SRK alleles has occurred since these species diverged. The diversity difference between the SCR and SRK loci in A. thaliana, however, suggests crossing-over, either within SRK or between the SCR and SRK loci. If the loss of SI involved fixation of the PsiSCR1 sequence, the exchange must have occurred during its fixation. Divergence between the species is much lower at the S-locus, compared with reference loci, and we discuss two contributory possibilities. Introgression may have occurred between A. lyrata and A. halleri and between their ancestral lineage and A. thaliana, at least for some period after their split. In addition, the coalescence times of sequences of individual S-haplogroups are expected to be less than those of alleles at non-S-loci.
منابع مشابه
Independent origins of self-compatibility in Arabidopsis thaliana.
The evolution from outcrossing based on self-incompatibility (SI) to a selfing system is one of the most prevalent transitions in flowering plants. It has been suggested that the loss of SI in Arabidopsis thaliana is associated with pseudogene formation at the SCR male component of the S locus. Recent work, however, suggests that alternative alleles with large deletions at the S locus are also ...
متن کاملThe impacts of TRR14 over-expression on Arabidopsis thaliana growth and some photosynthetic parameters
Background: TRR14 protein is a small member of a multi-gene family in Arabidopsis and is the first ones found during screening of seedlings for their resistant to the trehalose sugar.Objectives: Characterization ofTRR14 over-expressed plants with respect to morphological changes, growth and photosynthesis related parameters.Materials and methods: TRR14gene was isolated from Arabidop...
متن کاملPatterns of Polymorphism at the Self-Incompatibility Locus in 1,083 Arabidopsis thaliana Genomes
Although the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been ma...
متن کاملSelf-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana.
As a starting point for a phylogenetic study of self-incompatibility (SI) in crucifers and to elucidate the genetic basis of transitions between outcrossing and self-fertilizing mating systems in this family, we investigated the SI system of Arabidopsis lyrata. A. lyrata is an outcrossing close relative of the self-fertile A. thaliana and is thought to have diverged from A. thaliana approximate...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 23 9 شماره
صفحات -
تاریخ انتشار 2006